MapReduce Tutorial

Table of contents

070 PRSP 2
P (= 1 0 (0TRSO 2
S OVEIVIBIW. ..ttt b et s ae e b e et e e ae e eb e e a b e e he e nbe et e eRe e beeneenheenbeenbeeneenreas 2
4 INPULS @NA OULPULS.......eeeveeieitiesie et este et seesteesteeee e e ssesseesseessesseesseesesnsesseensesnnesees 3
5 Example: WOrdCoUNt VL.0........c.coiieieiieniecie et eee e te et sne e e nne e nns 3
T IS0 1 £ 0/ =X o [3
B2 USAOR. ...ttt et s n e nre e 6
5.3 Bundling a data payload with your appliCation.............ccceereeriiinneereeeseee e 7
5.4 WaAK-TNIOUGN.......ceee et e e be e sae e e aeennee s 8
6 MapReduCe - USEr INTEIfaCES........ccveieee ettt 9
a3 = (Y] o o P 9
6.2 JOD CONFIGUIBLION. ... ettt sttt nn e e b e nne e 15
6.3 Task EXeCUtioN & ENVIFONMENL.........ccoivriiieeieeie e ee et see e sne e 16
6.4 Job SUbMISSION @Nd MONITOIING......civeeeeieeeeie e e see e 24
LSS 0] o I 1o 11 | S PRS 26
(SN o o T U 11 | S 27
6.7 Other USEfUl FEAIUIES..........ooiieieieieiee et 30
7 EXample: WOrdCOUNE V2.0........coiiiiiiiesiesiesieeee ettt 37
7.1 SOUICE COUR.....eeiueeitieie ettt ste et et este e sae e te e esseesbeeseesseenseensesseeseeneesneenseeneens 37
7.2 SAMPIE RUNS......ei et st e e s reenbeeneesreenseeneens 42

MapReduce Tutorial

1. Purpose

This document comprehensively describes all user-facing facets of the Hadoop MapReduce
framework and serves as atutorial.

2. Prerequisites

Make sure Hadoop is installed, configured and running. See these guides:

» Single Node Setup for first-time users.
» Cluster Setup for large, distributed clusters.

3. Overview

Hadoop MapReduce is a software framework for easily writing applications which process
vast amounts of data (multi-terabyte data-sets) in-parallel on large clusters (thousands of
nodes) of commodity hardware in areliable, fault-tolerant manner.

A MapReduce job usually splits the input data-set into independent chunks which are
processed by the map tasksin a completely parallel manner. The framework sorts the outputs
of the maps, which are then input to the reduce tasks. Typically both the input and the output
of the job are stored in afile-system. The framework takes care of scheduling tasks,
monitoring them and re-executes the failed tasks.

Typically the compute nodes and the storage nodes are the same, that is, the MapReduce
framework and the Hadoop Distributed File System (HDFS) are running on the same set of
nodes. This configuration allows the framework to effectively schedule tasks on the nodes
where data is already present, resulting in very high aggregate bandwidth across the cluster.

The MapReduce framework consists of asingle master JobTr acker and one slave
TaskTr acker per cluster-node. The master is responsible for scheduling the jobs
component tasks on the slaves, monitoring them and re-executing the failed tasks. The slaves
execute the tasks as directed by the master.

Minimally, applications specify the input/output locations and supply map and reduce
functions viaimplementations of appropriate interfaces and/or abstract-classes. These, and
other job parameters, comprise the job configuration. The Hadoop job client then submits the
job (jar/executable etc.) and configuration to the JobTr acker which then assumes the
responsibility of distributing the software/configuration to the slaves, scheduling tasks and
monitoring them, providing status and diagnostic information to the job-client.

Although the Hadoop framework is implemented in JavaTM, MapReduce applications need

Page 2

http://hadoop.apache.org/common/docs/current/single_node_setup.html
http://hadoop.apache.org/common/docs/current/cluster_setup.html
http://hadoop.apache.org/hdfs/docs/current/index.html

MapReduce Tutorial

not be written in Java

« Hadoop Streaming is a utility which allows users to create and run jobs with any
executables (e.g. shell utilities) as the mapper and/or the reducer.

« Hadoop Pipesisa SWIG- compatible C++ API to implement MapReduce applications
(non INITM based).

4. Inputs and Outputs

The MapReduce framework operates exclusively on <key, val ue> pairs, that is, the
framework views the input to the job as a set of <key, val ue> pairsand produces a set of
<key, val ue> pairsasthe output of the job, conceivably of different types.

Thekey and val ue classes have to be serializable by the framework. Several serialization
systems exists; the default serialization mechanism requires keys and values to implement the
Writable interface. Additionally, the key classes must facilitate sorting by the framework; a
straightforward means to do so is for them to implement the WritableComparable interface.

Input and Output types of a MapReduce job:

(input) <k1, v1>->map-><k2, v2>->combine* -><k2, v2>->reduce-><k3,
v 3> (output)

Note that the combine phase may run zero or more times in this process.

5. Example: WordCount v1.0

Before we jump into the details, lets walk through an example MapReduce application to get
aflavour for how they work.

Wor dCount isasimple application that counts the number of occurences of each word in a
given input set.

This example works with a pseudo-distributed (Single Node Setup) or fully-distributed
(Cluster Setup) Hadoop installation.

5.1. Source Code

1. package org. nyorg;
2.
3. i mport java.io. | OException;

Page 3

api/org/apache/hadoop/streaming/package-summary.html
api/org/apache/hadoop/mapred/pipes/package-summary.html
http://www.swig.org/
api/org/apache/hadoop/io/Writable.html
api/org/apache/hadoop/io/WritableComparable.html
http://hadoop.apache.org/common/docs/current/single_node_setup.html
http://hadoop.apache.org/common/docs/current/cluster_setup.html

©|l® N o &

MapReduce Tutorial

i mport java.util.?*;

i mport org.apache. hadoop. fs. Pat h;

i mport org.apache. hadoop. conf. *;

i mport org.apache. hadoop.io. *;

i mport org. apache. hadoop. mapr educe. *;

i mport org. apache. hadoop. mapreduce. | i b. i nput.*;
i mport org.apache. hadoop. mapreduce. | i b. out put . *;

i mport org.apache. hadoop. util.*;

13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.
30.

public class WrdCount extends Configured inplent

public static class Mp

ext ends Mapper<LongWitable, Text, Text,
private final static IntWitable one = new

private Text word = new Text();

public void map(LongWitabl e key, Text val ue
throws | OException, |nterruptedExceptior
String line = value.toString();
StringTokeni zer tokenizer = new StringToke
whi |l e (tokenizer. hasMreTokens()) {
wor d. set (t okeni zer. next Token());

context.wite(word, one);

Page 4

MapReduce Tutorial

31.

32. public static class Reduce

33. extends Reducer<Text, IntWitable, Text, |
34. public void reduce(Text key, lterable<intWi
35. Context context) throws | OException, Int
36.

37. int sum= 0;

38. for (IntWitable val : values) {

39. sum += val . get();

40. }

41. context.wite(key, new IntWitable(sum);
42. }

43. }

44.

45, public int run(String [] args) throws Exceptioc
46. Job job = new Job(get Conf());

47. j ob. set Jar Byd ass(Wbr dCount . cl ass) ;

48. j ob. set JobNane("wor dcount ") ;

49.

50. j ob. set Qut put Keyd ass(Text. cl ass);

51. j ob. set Qut put Val ueC ass(I nt Wi table.cl ass);
52.

53. j ob. set Mapper Cl ass(Map. cl ass);

54, j ob. set Combi ner d ass(Reduce. cl ass);

55. j ob. set Reducer d ass(Reduce. cl ass);

56.

57. j ob. set | nput For mat Cl ass(Text | nput For nat . ¢l as

Page 5

58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.

5.2. Usage

MapReduce Tutorial

j ob. set Qut put For mat O ass(Text Qut put For mat . c

Fi | el nput For nat . set | nput Pat hs(j ob, new Pat h(

Fi | eQut put For nat . set Cut put Pat h(j ob, new Pat h

bool ean success = job.wait For Conpl etion(true

return success ? 0 : 1;

public static void main(String[] args) throws
int ret = Tool Runner.run(new WordCount (), ar

Systemexit(ret);

Assuming HADOOP_HOVE is the root of the installation and HADOOP_VERSI ONisthe
Hadoop version installed, compile Wor dCount . j ava and create ajar:

$ nkdir wordcount cl asses
$ javac -classpath

${ HADOOP_HQOVE} / hadoop- cor e- ${ HADOOP_VERSI ON} . j ar : ${ HADOOP_HQVE} / hadoop- e
-d wordcount _cl asses WrdCount. java
$ jar -cvf /user/joe/wordcount.jar -C wordcount cl asses/

Assuming that:

[user/joel/ wordcount /i nput -inputdirectory in HDFS
[user/j oe/ wordcount/ out put - output directory in HDFS

Sample text-files as input:

$ bin/hadoop fs -lIs /user/joe/wordcount/i nput/

Page 6

MapReduce Tutorial

/user/joe/wordcount/input/fileOl
/user/joel/wordcount/input/file02

$ bin/hadoop fs -cat /user/joe/wordcount/input/file0l
Hello Wrld Bye Wrld

$ bin/hadoop fs -cat /user/joe/wordcount/input/file02
Hel | o Hadoop Goodbye Hadoop

Run the application:

$ bi n/ hadoop jar /user/joe/wordcount.jar org.myorg. WrdCount
[user/joe/wordcount/input /user/joe/wordcount/ out put

Output:

$ bin/hadoop fs -cat /user/joe/wordcount/output/part-r-00000
Bye 1

Goodbye 1

Hadoop 2

Hello 2

Wrld 2

5.3. Bundling a data payload with your application

Applications can specify a comma-separated list of paths which would be present in the
current working directory of the task using the option-fi | es. The-11i bj ar s option
allows applications to add jars to the classpaths of the maps and reduces. The option

- ar chi ves alowsthem to pass comma separated list of archives as arguments. These
archives are unarchived and a link with name of the archive is created in the current working
directory of tasks. The mechanism that provides this functionality is called the distributed
cache. More details about the command line options surrounding job launching and control
of the distributed cache are available at Hadoop Commands Guide.

Hadoop ships with some example code in ajar precompiled for you; one of these is (another)
wordcount program. Here's an example invocation of thewor dcount example with
-libjars,-filesand-archives:

hadoop j ar hadoop- exanpl es.jar wordcount -files cachefile.txt
-libjars nmylib.jar -archives myarchive. zip input output Here
myarchive.zip will be placed and unzipped into a directory by the name "myarchive.zip"

Users can specify a different symbolic name for files and archives passed through -files and
-archives option, using #.

For example, hadoop | ar hadoop- exanpl es.jar wordcount -files

Page 7

http://hadoop.apache.org/common/docs/current/commands_default.html

MapReduce Tutorial

dirl/dict.txt#dictl, dir2/dict.txt#dict2 -archives
mytar.tgz#tgzdir input output Here thefilesdirl/dict.txt and dir2/dict.txt can
be accessed by tasks using the symbolic names dict1 and dict2 respectively. And the archive
mytar.tgz will be placed and unarchived into a directory by the name tgzdir.

The distributed cache is also described in greater detail further down in thistutorial.

5.4. Walk-through

This section describes the operation of the Wor dCount application shown earlier in this
tutorial.

The Mapper implementation (lines 16-30), viathe map method (lines 21-29), processes one
line at atime, as provided by the specified Text | nput For mat (line 57). It then splits the
line into tokens separated by whitespaces, viathe St r i ngTokeni zer , and emitsa
key-value pair of < <wor d>, 1>,

For the given sample input the first map emits:

< Hello, 1>
< Wrld, 1>
< Bye, 1>

< Wrld, 1>

The second map emits:
< Hello, 1>

< Hadoop, 1>

< Goodbye, 1>

< Hadoop, 1>

WE'll learn more about the number of maps spawned for a given job, and how to control
them in afine-grained manner, abit later in the tutorial.

Wor dCount also specifiesaconbi ner (line 54). Hence, the output of each map is passed
through the local combiner (which is same asthe Reducer as per the job configuration) for
local aggregation, after being sorted on the keys.

The output of the first map:

< Bye, 1>
< Hello, 1>
< Wrld, 2>

The output of the second map:
< Goodbye, 1>
< Hadoop, 2>

Page 8

api/org/apache/hadoop/mapreduce/Mapper.html
api/org/apache/hadoop/mapreduce/lib/input/TextInputFormat.html
api/org/apache/hadoop/mapreduce/Reducer.html

MapReduce Tutorial

< Hello, 1>

The Reducer implementation (lines 32-43), viather educe method (lines 34-42) just
sums up the values, which are the occurence counts for each key (i.e. wordsin this example).

Thus the output of the job is:
< Bye, 1>

Goodbye, 1>
Hadoop, 2>

Hel | 0, 2>

Wrld, 2>

Ther un method specifies various facets of the job, such as the input/output paths (passed
viathe command line), key/value types, input/output formats etc., in the Job. It then calls
theJob. wai t For Conpl et i on() (line 63) to submit the job to Hadoop and monitor its
progress.

<
<
<
<

Wel'll learn more about Job, Mapper , Tool and other interfaces and classes a bit later in
the tutorial.

6. MapReduce - User Interfaces

This section provides a reasonable amount of detail on every user-facing aspect of the
MapReduce framwork. This should help users implement, configure and tune their jobsin a
fine-grained manner. However, please note that the javadoc for each class/interface remains
the most comprehensive documentation available; thisis only meant to be a tutorial.

Let usfirst takethe Mapper and Reducer classes. Applicationstypically extend them to
provide the map and r educe methods.

We will then discuss other core classesincluding Job, Parti ti oner, Cont ext,
| nput For mat , Qut put For mat , Qut put Conmi t t er and others.

Finally, we will wrap up by discussing some useful features of the framework such as the
Di stri but edCache, | sol ati onRunner etc.

6.1. Payload

Applications typically extend the Mapper and Reducer classesto provide the map and
r educe methods. These form the core of the job.

6.1.1. Mapper

Page 9

api/org/apache/hadoop/mapreduce/Reducer.html
api/org/apache/hadoop/mapreduce/Job.html
api/org/apache/hadoop/mapreduce/Job.html#waitForCompletion(boolean)
api/org/apache/hadoop/mapreduce/Job.html
api/org/apache/hadoop/mapreduce/Mapper.html
api/org/apache/hadoop/util/Tool.html
api/org/apache/hadoop/mapreduce/Mapper.html
api/org/apache/hadoop/mapreduce/Reducer.html
api/org/apache/hadoop/mapreduce/Job.html
api/org/apache/hadoop/mapreduce/Partitioner.html
api/org/apache/hadoop/mapreduce/MapContext.html
api/org/apache/hadoop/mapreduce/InputFormat.html
api/org/apache/hadoop/mapreduce/OutputFormat.html
api/org/apache/hadoop/mapreduce/OutputCommitter.html

MapReduce Tutorial

Mapper mapsinput key/value pairsto a set of intermediate key/value pairs.

Maps are the individual tasks that transform input records into intermediate records. The
transformed intermediate records do not need to be of the same type as the input records. A
given input pair may map to zero or many output pairs.

The Hadoop MapReduce framework spawns one map task for each | nput Spl i t generated
by the | nput For mat for thejob. Anl nput Spl i t isalogical representation of a unit of
input work for a map task; e.g., afilename and a byte range within that file to process. The

| nput For mat isresponsible for enumerating thel nput Spl i t s, and producing a
Recor dReader which will turn those logical work unitsinto actual physical input records.

Overdl, Mapper implementations are specified in the Job, a client-side class that describes
the job's configuration and interfaces with the cluster on behalf of the client program. The
Mapper itself then isinstantiated in the running job, and is passed a MapCont ext object
which it can use to configure itself. The Mapper containsar un() method which callsits
set up() method once, itsmap() method for each input record, and finally its

cl eanup() method. All of these methods (including r un(') itself) can be overridden with
your own code. If you do not override any methods (leaving even map as-is), it will act asthe
identity function, emitting each input record as a separate output.

The Cont ext object allows the mapper to interact with the rest of the Hadoop system. It
includes configuration data for the job, aswell as interfaces which allow it to emit output.
Theget Confi gur ati on() method returnsa Conf i gur at i on which contains
configuration data for your program. Y ou can set arbitrary (key, value) pairs of configuration
datainyour Job, e.g. with Job. get Confi guration(). set (" nyKey",

"nyVal ") , and then retrieve this data in your mapper with

Cont ext . get Confi guration().get("nmyKey") . Thissort of functionality is
typically donein the Mapper'sset up() method.

The Mapper . run() method then callsmap(Keyl nType, Val | nType, Cont ext)
for each key/value pair inthe |l nput Spl i t for that task. Note that in the WordCount
program's map() method, we then emit our output data viathe Cont ext argument, using its
write() method.

Applications can then override the Mapper'scl eanup() method to perform any required
teardown operations.

Output pairs do not need to be of the same types as input pairs. A given input pair may map
to zero or many output pairs. Output pairs are collected with callsto
Cont ext . write(KeyQut Type, Val Qut Type).

Applications can also use the Cont ext to report progress, set application-level status

Page 10

api/org/apache/hadoop/mapreduce/Mapper.html
api/org/apache/hadoop/mapreduce/InputSplit.html
api/org/apache/hadoop/mapreduce/InputFormat.html
api/org/apache/hadoop/mapreduce/RecordReader.html
api/org/apache/hadoop/mapreduce/Job.html
api/org/apache/hadoop/mapreduce/MapContext.html
api/org/apache/hadoop/conf/Configuration.html
api/org/apache/hadoop/mapreduce/Mapper.html#setup(org.apache.hadoop.mapreduce.Mapper.Context)
api/org/apache/hadoop/mapreduce/Mapper.html#run(org.apache.hadoop.mapreduce.Mapper.Context)
api/org/apache/hadoop/mapreduce/Mapper.html#cleanup(org.apache.hadoop.mapreduce.Mapper.Context)
api/org/apache/hadoop/mapreduce/TaskInputOutputContext.html#write(KEYOUT,%20VALUEOUT)

MapReduce Tutorial

messages and update Count er s, or just indicate that they are alive.

All intermediate values associated with a given output key are subsequently grouped by the
framework, and passed to the Reducer (s) to determine the final output. Users can control
the grouping by specifying a Conpar at or via

Job. set G oupi ngConpar at or G ass(d ass) . If agrouping comparator is not
specified, then all values with the same key will be presented by an unordered | t er abl e to
acall tothe Reducer . reduce() method.

The Mapper outputs are sorted and partitioned per Reducer . Thetotal number of
partitions is the same as the number of reduce tasks for the job. Users can control which keys
(and hence records) go to which Reducer by implementingacustomPartiti oner.

Users can optionally specify aconbi ner, viaJob. set Conbi ner & ass(d ass) , to
perform local aggregation of the intermediate outputs, which helps to cut down the amount of
data transferred from the Mapper to the Reducer .

The intermediate, sorted outputs are always stored in asimple (key-len, key, value-len,
value) format. Applications can control if, and how, the intermediate outputs are to be
compressed and the CompressionCodec to be used viathe Job.

6.1.1.1. How Many M aps?

The number of mapsis usually driven by the total size of the inputs, that is, the total number
of blocks of the input files.

Theright level of parallelism for maps seems to be around 10-100 maps per-node, although it
has been set up to 300 maps for very cpu-light map tasks. Task setup takes awhile, soitis
best if the maps take at |east a minute to execute.

Thus, if you expect 10TB of input data and have a blocksize of 128MB, you'll end up with
82,000 maps, unlessthe mapr educe. j ob. maps parameter (which only provides a hint to
the framework) is used to set it even higher. Ultimately, the number of tasksis controlled by
the number of splits returned by the] nput For mat . get Spl it s() method (which you
can override).

6.1.2. Reducer

Reducer reduces a set of intermediate values which share akey to a (usually smaller) set of
values.

The number of reduces for the job is set by the user via
Job. set NunReduceTasks(int).

Page 11

api/org/apache/hadoop/mapreduce/Job.html#setGroupingComparatorClass(java.lang.Class)
api/org/apache/hadoop/mapreduce/Partitioner.html
api/org/apache/hadoop/mapreduce/Job.html#setCombinerClass(java.lang.Class)
api/org/apache/hadoop/io/compress/CompressionCodec.html
api/org/apache/hadoop/mapreduce/InputFormat.html#getSplits(org.apache.hadoop.mapreduce.JobContext)
api/org/apache/hadoop/mapreduce/Reducer.html
api/org/apache/hadoop/mapreduce/Job.html#setNumReduceTasks(int)

MapReduce Tutorial

The API of Reducer isvery similar to that of Mapper ; theresar un() method that
receives a Cont ext containing the job's configuration as well as interfacing methods that
return data from the reducer itself back to the framework. Ther un() method calls

set up() once, r educe() oncefor each key associated with the reduce task, and

cl eanup() once at the end. Each of these methods can access the job's configuration data
by using Cont ext . get Confi gurati on() .

Asin Mapper, any or al of these methods can be overridden with custom implementations.
If none of these methods are overridden, the default reducer operation is the identity
function; values are passed through without further processing.

The heart of Reducer isitsr educe() method. Thisis called once per key; the second
argumentisan | t er abl e which returns all the values associated with that key. In the
WordCount example, thisisal of the 1's or other partial counts associated with a given
word. The Reducer should emit itsfinal output (key, value) pairs with the

Cont ext . wite() method. It may emit O, 1, or more (key, value) pairs for each input.

Reducer has 3 primary phases: shuffle, sort and reduce.

6.1.2.1. Shuffle

Input to the Reducer isthe sorted output of the mappers. In this phase the framework
fetches the relevant partition of the output of all the mappers, viaHTTP.

6.1.2.2. Sort

The framework groups Reducer inputs by keys (since different mappers may have output
the same key) in this stage.

The shuffle and sort phases occur simultaneously; while map-outputs are being fetched they
are merged.

Secondary Sort

If equivalence rules for grouping the intermediate keys are required to be different from those
for grouping keys before reduction, then one may specify a Conpar at or via
Job.setGroupingComparatorClass(Class). Since this can be used to control how intermediate
keys are grouped, these can be used in conjunction to simulate secondary sort on values.

6.1.2.3. Reduce

In this phase ther educe(MapQut KeyType, |t erabl e<MapQut Val Type>,
Cont ext) method iscalled for each <key, (1ist of val ues) > pairinthe grouped

Page 12

api/org/apache/hadoop/mapreduce/Reducer.html#run(org.apache.hadoop.mapreduce.Reducer.Context)
api/org/apache/hadoop/mapreduce/ReduceContext.html
api/org/apache/hadoop/mapreduce/Reducer.html#setup(org.apache.hadoop.mapreduce.Reducer.Context)
api/org/apache/hadoop/mapreduce/Reducer.html#reduce(KEYIN,%20java.lang.Iterable,%20org.apache.hadoop.mapreduce.Reducer.Context)
api/org/apache/hadoop/mapreduce/Reducer.html#cleanup(org.apache.hadoop.mapreduce.Reducer.Context)
api/org/apache/hadoop/mapreduce/Job.html#setGroupingComparatorClass(java.lang.Class)
api/org/apache/hadoop/mapreduce/Reducer.html#reduce(KEYIN,%20java.lang.Iterable,%20org.apache.hadoop.mapreduce.Reducer.Context)
api/org/apache/hadoop/mapreduce/Reducer.html#reduce(KEYIN,%20java.lang.Iterable,%20org.apache.hadoop.mapreduce.Reducer.Context)

MapReduce Tutorial

inputs.

The output of the reduce task is typically written to the FileSystem via
Cont ext.wite(ReduceQut KeyType, ReduceCQut Val Type).

Applications can use the Cont ext to report progress, set application-level status messages
and update Count er s, or just indicate that they are dlive.

The output of the Reducer isnot sorted.

6.1.2.4. How Many Reduces?

The right number of reduces seemsto be0. 95 or 1. 75 multiplied by (<no. of nodes> *
mapr educe. t askt racker. reduce. t asks. maxi mum.

With 0. 95 all of the reduces can launch immediately and start transfering map outputs as
the maps finish. With 1. 75 the faster nodes will finish their first round of reduces and
launch a second wave of reduces doing a much better job of load balancing.

Increasing the number of reduces increases the framework overhead, but increases |oad
balancing and lowers the cost of failures.

The scaling factors above are dightly less than whole numbers to reserve a few reduce slots
in the framework for specul ative-tasks and failed tasks.

6.1.2.5. Reducer NONE

It islegal to set the number of reduce-tasksto zero if no reduction is desired.

In this case the outputs of the map-tasks go directly to the Fi | eSyst em into the output
path set by setOutputPath(Path). The framework does not sort the map-outputs before writing
themout totheFi | eSyst em

6.1.2.6. Mark-Reset

While applications iterate through the values for agiven key, it is possible to mark the
current position and later reset the iterator to this position and continue the iteration process.
The corresponding methods are mar k() andreset ().

mar k() andr eset () can be caled any number of times during the iteration cycle. The
reset () method will reset the iterator to the last record before a call to the previous
mar k() .

This functionality is available only with the new context based reduce iterator.

Page 13

api/org/apache/hadoop/fs/FileSystem.html
api/org/apache/hadoop/mapreduce/Counters.html
api/org/apache/hadoop/mapreduce/lib/output/FileOutputFormat.html#setOutputPath(org.apache.hadoop.mapreduce.Job,%20org.apache.hadoop.fs.Path)

MapReduce Tutorial

The following code snippet demonstrates the use of this functionality.

Source Code

public void reduce(IntWitable key, Iterable<IntWitable> val ues, Context
context) throws | OException, InterruptedException {

Markabl elterator<IntWitable> mtr = new
Mar kabl el terator<IntWitabl e>(values.iterator());

/1 Mark the position

mtr.mark();

while (nmitr.hasNext()) {
i = mtr.next();

/1 Do the necessary processing

/!l Reset

mtr.reset();

/1 lterate all over again. Since mark was called before the first
/1 call to mitr.next() in this exanple, we will iterate over all
/1 the val ues now
while (mtr.hasNext()) {

i = mtr.next();

/1 Do the necessary processing

6.1.3. Partitioner

Partitioner partitionsthekey space.

Page 14

api/org/apache/hadoop/mapreduce/Partitioner.html

MapReduce Tutorial

Partitioner controls the partitioning of the keys of the intermediate map-outputs. The key (or
asubset of the key) is used to derive the partition, typically by a hash function. The total
number of partitions is the same as the number of reduce tasks for the job. Hence this
controls which of the mreduce tasks the intermediate key (and hence the record) is sent to for
reduction.

HashPartiti oner isthedefault Partiti oner.

6.1.4. Reporting Progress

Viathe mapper or reducer's Context, MapReduce applications can report progress, set
application-level status messages and update Count er s.

Mapper and Reducer implementations can use the Cont ext to report progress or just
indicate that they are alive. In scenarios where the application takes a significant amount of
time to process individual key/value pairs, thisis crucial since the framework might assume
that the task has timed-out and kill that task. Another way to avoid thisisto set the
configuration parameter mapr educe. t ask. ti meout to ahigh-enough vaue (or even set
it to zero for no time-outs).

Applications can also update Count er s using the Cont ext .

Hadoop MapReduce comes bundled with alibrary of generally useful mappers, reducers, and
partitionersintheor g. apache. hadoop. mapr educe. | i b package.

6.2. Job Configuration

The Job represents a MapReduce job configuration. The actual state for this object iswritten
to an underlying instance of Configuration.

Job isthe primary interface for a user to describe a MapReduce job to the Hadoop
framework for execution. The framework triesto faithfully execute the job as described by
Job, however:

« Some configuration parameters may have been marked as final by administrators and
hence cannot be altered.

« While somejob parameters are straight-forward to set (e.g.
set NunReduceTasks(i nt)), other parameters interact subtly with the rest of the
framework and/or job configuration and are more complex to set (e.g.
mapr educe. j ob. maps).

The Job istypically used to specify the Mapper , combiner (if any), Parti ti oner,
Reducer, | nput For mat , Qut put For mat and Qut put Commi t t er implementations.

Page 15

api/org/apache/hadoop/mapreduce/lib/partition/HashPartitioner.html
api/org/apache/hadoop/mapreduce/Counters.html
api/org/apache/hadoop/mapreduce/lib/package-summary.html
api/org/apache/hadoop/conf/Configuration.html
api/org/apache/hadoop/mapreduce/Job.html
api/org/apache/hadoop/conf/Configuration.html#FinalParams

MapReduce Tutorial

Job aso indicates the set of input files (setlnputPaths(Job, Path...) /addl nputPath(Job, Path))
and (setlnputPaths(Job, String) /addInputPaths(Job, String)) and where the output files
should be written (setOutputPath(Path)).

Optionally, Job is used to specify other advanced facets of the job such asthe

Conpar at or to be used, filesto beputintheDi st ri but edCache, whether
intermediate and/or job outputs are to be compressed (and how), debugging via
user-provided scripts, whether job tasks can be executed in a speculative manner

(setM apSpecul ati veExecution(bool ean))/(setReduceSpecul ativeExecution(bool ean))
maximum number of attempts per task

(setM axM apAttempts(int)/setM axReduceAttempts(int)) , percentage of tasks failure which
can betolerated by the job

(Job.getConfiguration().setInt(Job.MAP_FAILURES MAX_PERCENT,
int)/Job.getConfiguration().setint(Job.REDUCE_FAILURES MAX_PERCENT, int)), etc.

Of course, userscan use Job. get Confi gur ati on() to get accessto the underlying
configuration state, and can then use set(String, String)/get(String. String) to set/get arbitrary
parameters needed by applications. However, usethe Di st ri but edCache for large
amounts of (read-only) data.

6.3. Task Execution & Environment

The TaskTr acker executesthe Mapper/ Reducer task asachild processin a separate
jvm.

The child-task inherits the environment of the parent TaskTr acker . The user can specify
additional options to the child-jvm viathe

mapr ed. { map| reduce}. chil d. j ava. opt s configuration parameter in the job
configuration such as non-standard paths for the run-time linker to search shared libraries via
-Djava. li brary. pat h=<> etc. If the

mapr ed. { map| reduce}. chil d. j ava. opt s parameters contains the symbol
@taskid@ it isinterpolated with value of t aski d of the MapReduce task.

Here is an example with multiple arguments and substitutions, showing jvm GC logging, and
start of a passwordless VM JM X agent so that it can connect with jconsole and the likes to
watch child memory, threads and get thread dumps. It also sets the maximum heap-size of
the map and reduce child jvm to 512MB & 1024MB respectively. It also adds an additional
pathtothej ava. | i brary. pat h of the child-jvm.

<property>
<nane>mapr educe. nap. j ava. opt s</ nane>
<val ue>

Page 16

api/org/apache/hadoop/mapreduce/lib/input/FileInputFormat.html#setInputPaths(org.apache.hadoop.mapreduce.Job,%20org.apache.hadoop.fs.Path...)
api/org/apache/hadoop/mapreduce/lib/input/FileInputFormat.html#addInputPath(org.apache.hadoop.mapreduce.Job,%20org.apache.hadoop.fs.Path)
api/org/apache/hadoop/mapreduce/lib/input/FileInputFormat.html#setInputPaths(org.apache.hadoop.mapreduce.Job,%20java.lang.String)
api/org/apache/hadoop/mapreduce/lib/input/FileInputFormat.html#addInputPaths(org.apache.hadoop.mapreduce.Job,%20java.lang.String)
api/org/apache/hadoop/mapreduce/lib/output/FileOutputFormat.html#setOutputPath(org.apache.hadoop.mapreduce.Job,%20org.apache.hadoop.fs.Path)
api/org/apache/hadoop/mapreduce/Job.html#setMapSpeculativeExecution(boolean)
api/org/apache/hadoop/mapreduce/Job.html#setReduceSpeculativeExecution(boolean)
api/org/apache/hadoop/mapreduce/Job.html#setMaxMapAttempts(int)
api/org/apache/hadoop/mapreduce/Job.html#setMaxReduceAttempts(int)
api/org/apache/hadoop/conf/Configuration.html#set(java.lang.String, java.lang.String)
api/org/apache/hadoop/conf/Configuration.html#get(java.lang.String, java.lang.String)

MapReduce Tutorial

- Xnx512M - Dj ava. | i brary. pat h=/ honme/ myconpany/lib
-verbose: gc - Xl oggc:/tnmp/ @aski d@ gc
- Dcom sun. managenent . j nxr enot e. aut henti cat e=f al se
- Dcom sun. managenent . j nxr enot e. ssl =f al se
</val ue>
</ property>

<property>
<nane>mapr educe. r educe. j ava. opt s</ nane>
<val ue>
- Xmx1024M - Oj ava. | i brary. pat h=/ home/ nyconpany/|lib
-verbose: gc - Xl oggc: /tnp/ @aski d@ gc
- Dcom sun. managenent . j nxr enot e. aut hent i cat e=f al se
- Dcom sun. managenent . j nxr enot e. ssl =f al se
</val ue>
</ property>

6.3.1. Configuring Memory Requirements For A Job

MapReduce tasks are launched with some default memory limits that are provided by the
system or by the cluster's administrators. Memory intensive jobs might need to use more than
these default values. Hadoop has some configuration options that allow these to be changed.
Without such modifications, memory intensive jobs could fail dueto Qut Of Menory errors
in tasks or could get killed when the limits are enforced by the system. This section describes
the various options that can be used to configure specific memory requirements.

« mapreduce. { map| reduce}.j ava. opt s: If the task requires more Java heap
space, this option must be used. The value of this option should pass the desired heap
using the JVM option -Xmx. For example, to use 1G of heap space, the option should be
passed in as -Xmx1024m. Note that other VM options are aso passed using the same
option. Hence, append the heap space option along with other options already configured.

« mapreduce. { map| reduce}. ul i m t: The slaves where tasks are run could be
configured with a ulimit value that applies alimit to every process that is launched on the
dave. If thetask, or any child that the task launches (like in streaming), requires more
than the configured limit, this option must be used. The valueis given in kilobytes. For
example, to increase the ulimit to 1G, the option should be set to 1048576. Note that this
valueisaper process limit. Sinceit appliesto the VM as well, the heap space given to
the JVM through the mapr educe. { map| r educe} . j ava. opt s should beless than
the value configured for the ulimit. Otherwise the VM will not start.

« mapreduce. { map| reduce}. menory. nb: In some environments, administrators
might have configured atotal limit on the virtual memory used by the entire process tree
for atask, including all processes launched recursively by the task or its children, likein

Page 17

MapReduce Tutorial

streaming. More details about this can be found in the section on Monitoring Task
Memory Usage in the Cluster SetUp guide. If atask requires more virtual memory for its
entire tree, this option must be used. The valueis given in MB. For example, to set the
limit to 1G, the option should be set to 1024. Note that this value does not automatically
influence the per process ulimit or heap space. Hence, you may need to set those
parameters as well (as described above) in order to give your tasks the right amount of
memory.

« mapreduce. { map| reduce}. menory. physi cal . nb: This parameter is similar
to mapr educe. { map| r educe} . menory. nb, except it specifies how much physical
memory isrequired by atask for its entire tree of processes. The parameter is applicable
if administrators have configured atotal limit on the physical memory used by all
MapReduce tasks.

As seen above, each of the options can be specified separately for map and reduce tasks. It is
typically the case that the different types of tasks have different memory requirements. Hence
different values can be set for the corresponding options.

The memory available to some parts of the framework is aso configurable. In map and
reduce tasks, performance may be influenced by adjusting parameters influencing the
concurrency of operations and the frequency with which data will hit disk. Monitoring the
filesystem counters for ajob- particularly relative to byte counts from the map and into the
reduce- isinvaluable to the tuning of these parameters.

Note: The memory related configuration options described above are used only for
configuring the launched child tasks from the tasktracker. Configuring the memory options
for daemons is documented under Configuring the Environment of the Hadoop Daemons
(Cluster Setup).

6.3.2. Map Parameters

A record emitted from a map and its metadata will be serialized into a buffer. As described in
the following options, when the record data exceed a threshold, the contents of this buffer
will be sorted and written to disk in the background (a " spill™) while the map continues to
output records. If the remainder of the buffer fills during the spill, the map thread will block.
When the map is finished, any buffered records are written to disk and all on-disk segments
are merged into asingle file. Minimizing the number of spillsto disk can decrease map time,
but alarger buffer also decreases the memory available to the mapper.

mapreduce.task.io.sort.mb int The cumulative size of the
serialization and accounting
buffers storing records emitted

Page 18

http://hadoop.apache.org/common/docs/current/cluster_setup.html#Configuring+Memory+Parameters+for+MapReduce+Jobs
http://hadoop.apache.org/common/docs/current/cluster_setup.html#Configuring+Memory+Parameters+for+MapReduce+Jobs
http://hadoop.apache.org/common/docs/current/cluster_setup.html#Configuring+the+Environment+of+the+Hadoop+Daemons

MapReduce Tutorial

from the map, in megabytes.

mapreduce.map.sort.spill.percen float This is the threshold for the
accounting and serialization
buffer. When this percentage of
thei o. sort. nb has filled, its
contents will be spilled to disk
in the background. Note that a
higher value may decrease the
number of- or even eliminate-
merges, but will also increase
the probability of the map task
getting blocked. The lowest
average map times are usually
obtained by accurately
estimating the size of the map
output and preventing multiple

spills.
Other notes
« If the spill threshold is exceeded while a spill isin progress, collection will continue until
the spill isfinished. For example, if mapr educe. map. sort.spill. percent isset

to 0.33, and the remainder of the buffer isfilled while the spill runs, the next spill will
include al the collected records, or 0.66 of the buffer, and will not generate additional
spills. In other words, the thresholds are defining triggers, not blocking.

» A record larger than the serialization buffer will first trigger a spill, then be spilled to a
separate file. It is undefined whether or not this record will first pass through the
combiner.

6.3.3. Shuffle/Reduce Parameters

As described previously, each reduce fetches the output assigned to it by the Partitioner via
HTTP into memory and periodically merges these outputs to disk. If intermediate
compression of map outputs is turned on, each output is decompressed into memory. The
following options affect the frequency of these merges to disk prior to the reduce and the
memory allocated to map output during the reduce.

mapreduce.task.io.sort.factor int Specifies the number of
segments on disk to be merged
at the same time. It limits the
number of open files and
compression codecs during the
merge. If the number of files

Page 19

MapReduce Tutorial

exceeds this limit, the merge
will proceed in several passes.
Though this limit also applies to
the map, most jobs should be
configured so that hitting this
limit is unlikely there.

mapreduce.reduce.merge.inmen int The number of sorted map
outputs fetched into memory
before being merged to disk.
Like the spill thresholds in the
preceding note, this is not
defining a unit of partition, but a
trigger. In practice, this is
usually set very high (1000) or
disabled (0), since merging
in-memory segments is often
less expensive than merging
from disk (see notes following
this table). This threshold
influences only the frequency of
in-memory merges during the
shuffle.

mapreduce.reduce.shuffle.merge float The memory threshold for
fetched map outputs before an
in-memory merge is started,
expressed as a percentage of
memory allocated to storing
map outputs in memory. Since
map outputs that can't fit in
memory can be stalled, setting
this high may decrease
parallelism between the fetch
and merge. Conversely, values
as high as 1.0 have been
effective for reduces whose
input can fit entirely in memory.
This parameter influences only
the frequency of in-memory
merges during the shuffle.

mapreduce.reduce.shuffle.input.t float The percentage of memory-
relative to the maximum
heapsize as typically specified
in
mapr educe. r educe. j ava. opt s-
that can be allocated to storing

Page 20

MapReduce Tutorial

mapreduce.reduce.input.buffer.p float

Other notes

map outputs during the shuffle.
Though some memory should
be set aside for the framework,
in general it is advantageous to
set this high enough to store
large and numerous map
outputs.

The percentage of memory
relative to the maximum
heapsize in which map outputs
may be retained during the
reduce. When the reduce
begins, map outputs will be
merged to disk until those that
remain are under the resource
limit this defines. By default, all
map outputs are merged to disk
before the reduce begins to
maximize the memory available
to the reduce. For less
memory-intensive reduces, this
should be increased to avoid
trips to disk.

« |f amap output islarger than 25 percent of the memory allocated to copying map outputs,
it will be written directly to disk without first staging through memory.

« When running with a combiner, the reasoning about high merge thresholds and large
buffers may not hold. For merges started before all map outputs have been fetched, the
combiner is run while spilling to disk. In some cases, one can obtain better reduce times
by spending resources combining map outputs- making disk spills small and parall€elizing
spilling and fetching- rather than aggressively increasing buffer sizes.

« When merging in-memory map outputs to disk to begin the reduce, if an intermediate
merge is necessary because there are segments to spill and at least
mapr educe. t ask. i 0. sort. fact or segmentsalready on disk, the in-memory

map outputs will be part of the intermediate merge.

6.3.4. Directory Structure
The task tracker has local directory,

${ mapr educe. cluster.local .dir}/taskTracker/ tocreatelocalized cache
and localized job. It can define multiple local directories (spanning multiple disks) and then
each filename is assigned to a semi-random local directory. When the job starts, task tracker

Page 21

MapReduce Tutorial

creates alocalized job directory relative to the local directory specified in the configuration.
Thus the task tracker directory structure looks as following:

${mapreduce. cl uster.local .dir}/taskTracker/di st cache/ : The
public distributed cache for the jobs of all users. This directory holds the localized public
distributed cache. Thus localized public distributed cache is shared among all the tasks
and jobs of all users.

${ mapreduce. cluster.local .dir}/taskTracker/ $user/ di st cache/

: The private distributed cache for the jobs of the specific user. This directory holds the
localized private distributed cache. Thus localized private distributed cache is shared
among all the tasks and jobs of the specific user only. It is not accessible to jobs of other
users.

${mapreduce. cl uster.local .dir}/taskTracker/ $user/jobcache/ $j obi d/
: The localized job directory

${mapreduce. cl uster.local .dir}/taskTracker/ $user/jobcache/ $j obi d/ wor
: The job-specific shared directory. The tasks can use this space as scratch space and
share files among them. This directory is exposed to the users through the
configuration property mapr educe. j ob. | ocal . di r. Itisavailable as System
property also. So, users (streaming etc.) can call
Syst em get Property(" mapreduce. job. | ocal .dir") toaccessthe
directory.
${mapreduce. cluster.local .dir}/taskTracker/ $user/jobcache/ $j obi d/j ar
: The jars directory, which hasthe job jar file and expanded jar. Thej ob. j ar isthe
application'sjar file that is automatically distributed to each machine. Any library jars
that are dependencies of the application code may be packaged inside thisjarina
I'i b/ directory. Thisdirectory is extracted fromj ob. j ar and its contents are
automatically added to the classpath for each task. The job.jar location is accessible to
the application through the API Job.getJar() . To access the unjarred directory,
Job.getJar().getParent() can be called.
${mapreduce. cl uster.local .dir}/taskTracker/ $user/jobcache/ $j obi d/ | ol
: The job.xml file, the generic job configuration, localized for the job.
${mapreduce. cluster.local .dir}/taskTracker/ $user/jobcache/ $j obi d/ $t «
: The task directory for each task attempt. Each task directory again has the following
structure :
e« ${mapreduce.cluster.local.dir}/taskTracker/ $user/jobcache/ $j obi d/
. A job.xml file, task localized job configuration, Task localization means that
properties have been set that are specific to this particular task within the job. The
properties localized for each task are described below.
« ${mapreduce.cluster.local.dir}/taskTracker/ $user/jobcache/ $j obi d/
. A directory for intermediate output files. This contains the temporary map
reduce data generated by the framework such as map output files etc.

Page 22

api/org/apache/hadoop/mapreduce/task/JobContextImpl.html#getJar()

MapReduce Tutorial

${mapreduce. cl uster.local .dir}/taskTracker/ $user/jobcache/ $j obi d/
: The curernt working directory of the task. With jvm reuse enabled for tasks, this

directory will be the directory on which the jvm has started

${mapreduce. cl uster.local .dir}/taskTracker/ $user/jobcache/ $j obi d/
: The temporary directory for the task. (User can specify the property

mapr educe. t ask. t np. di r to set the value of temporary directory for map

and reduce tasks. Thisdefaultsto . / t np. If the value is not an absolute path, it is

prepended with task's working directory. Otherwise, it is directly assigned. The

directory will be created if it doesn't exist. Then, the child java tasks are executed

withoption- Oj ava. i o. t npdi r="t he absol ute path of the tnp

di r' . Pipes and streaming are set with environment variable, TMPDI R=" t he

absol ute path of the tnp dir'). Thisdirectory iscreated, if

mapr educe. t ask. t np. di r hasthevalue. /t np

6.3.5. Task JVM Reuse

Jobs can enable task VMs to be reused by specifying the job configuration

mapr educe. j ob. j vm nunt asks. If thevalueis 1 (the default), then JVMs are not
reused (i.e. 1task per VM). If itis-1, thereis no limit to the number of tasksa JVM can run
(of the same job). One can a so specify some value greater than 1 using the api

Job. get Configuration().setlnt(Job.JVM NUM TASKS TO RUN, int).

6.3.6. Configured Parameters

The following properties are localized in the job configuration for each task's execution:

mapreduce.job.id String The job id

mapreduce.job.jar String job.jar location in job directory

mapreduce.job.local.dir String The job specific shared scratch
space

mapreduce.task.id String The task id

mapreduce.task.attempt.id String The task attempt id

mapreduce.task.ismap boolean Is this a map task

mapreduce.task.partition int The id of the task within the job

mapreduce.map.input.file String The filename that the map is

reading from

Page 23

MapReduce Tutorial

mapreduce.map.input.start long The offset of the start of the
map input split

mapreduce.map.input.length long The number of bytes in the
map input split

mapreduce.task.output.dir String The task's temporary output
directory

Note: During the execution of a streaming job, the names of the "mapred" parameters are
transformed. The dots (.) become underscores (_). For example, mapreduce.job.id becomes
mapreduce.job.id and mapreduce.job.jar becomes mapreduce.job.jar. To get the valuesin a
streaming job's mapper/reducer use the parameter names with the underscores.

6.3.7. Task Logs

The standard output (stdout) and error (stderr) streams of the task are read by the
TaskTracker and logged to ${ HADOOP_LOG DI R}/ user | ogs

6.3.8. Distributing Libraries

The DistributedCache can also be used to distribute both jars and native libraries for usein
the map and/or reduce tasks. The child-jvm always has its current working directory added to
thej ava. |l i brary. pat hand LD LI BRARY_ PATH. And hence the cached libraries can
be loaded via System.loadL ibrary or System.load. More details on how to load shared
libraries through distributed cache are documented under Building Native Hadoop Libraries.

6.4. Job Submission and Monitoring
The Job isthe primary interface by which user-job interacts with the JobTr acker .

Job provides facilities to submit jobs, track their progress, access component-tasks' reports
and logs, get the MapReduce cluster's status information and so on.

The job submission process involves:

1. Checking the input and output specifications of the job.

2. Computing the | nput Spl i t valuesfor thejob.

3. Setting up the requisite accounting information for the Di st r i but edCache of the job,
if necessary.

4. Copying thejob'sjar and configuration to the MapReduce system directory on the
Fi | eSystem

5. Submitting the job to the JobTr acker and optionally monitoring it's status.

User can view the history log summary for a given history file using the following command

Page 24

http://java.sun.com/javase/6/docs/api/java/lang/System.html#loadLibrary(java.lang.String)
http://java.sun.com/javase/6/docs/api/java/lang/System.html#load(java.lang.String)
http://hadoop.apache.org/common/docs/current/native_libraries.html#Loading+Native+Libraries+Through+DistributedCache

MapReduce Tutorial

$ bin/hadoop job -history history-file

This command will print job details, failed and killed tip details.

More details about the job such as successful tasks and task attempts made for each task can
be viewed using the following command

$ bin/hadoop job -history all history-file

User can use Outputl ogFilter to filter log files from the output directory listing.

Normally the user creates the application, describes various facets of the job viaJob, and
then usesthewai t For Conpl et i on() method to submit the job and monitor its progress.

6.4.1. Job Control

Users may need to chain MapReduce jobs to accomplish complex tasks which cannot be
done viaasingle MapReduce job. Thisisfairly easy since the output of the job typically goes
to distributed file-system, and the output, in turn, can be used as the input for the next job.

However, this also means that the onus on ensuring jobs are complete (success/failure) lies
squarely on the clients. In such cases, the various job-control options are:

o Job. wai t For Conpl et i on() : Submitsthe job and returns only after the job has
completed.

e Job. subm t () : Only submitsthe job;, then poll the other methods of Job such as
i sConpl ete(),isSuccessful (), etc. to query status and make scheduling
decisions,

e« Job. get Configuration().set(Job. END NOTI FI CATI ON_URL, String)
. Sets up a notification upon job-completion, thus avoiding polling.

6.4.2. Job Authorization

Job level authorization is enabled on the cluster, if the configuration

mapr educe. cl ust er. j ob-aut hori zati on- enabl ed isset to true. When enabled,
access control checks are done by the JobTracker and the TaskTracker before allowing users
to view job details or to modify ajob using Map/Reduce APIs, CLI or web user interfaces.

A job submitter can specify access control lists for viewing or modifying ajob viathe
configuration properties mapr educe. j ob. acl - vi ewj ob and

mapr educe. j ob. acl - nodi f y- | ob respectively. By default, nobody is given accessin
these properties.

However, irrespective of the ACLs configured, ajob's owner, the superuser and the members
of an admin configured supergroup
(mapr educe. cl ust er. per m ssi ons. super gr oup) aways have access to view

Page 25

api/org/apache/hadoop/mapred/OutputLogFilter.html
api/org/apache/hadoop/mapreduce/Job.html#waitForCompletion(boolean)
api/org/apache/hadoop/mapreduce/Job.html#submit()

MapReduce Tutorial

and modify ajob.

A job view ACL authorizes users against the configured
mapr educe. j ob. acl - vi ew j ob before returning possibly sensitive information about
ajob, like:

job level counters

task level counters

tasks's diagnostic information

task logs displayed on the TaskTracker web Ul
job.xml showed by the JobTracker's web Ul

Other information about ajob, like its status and its profile, is accessible to all users, without
requiring authorization.

A job modification ACL authorizes users against the configured

mapr educe. j ob. acl - nodi f y- | ob before allowing modifications to jobs, like:
« killingajob

« killing/failing atask of ajob

e setting the priority of ajob

These operations are also protected by the queue level ACL, "acl-administer-jobs’,
configured via mapred-queue-acls.xml. The caller will be authorized against both queue level
ACLsand job level ACLs, depending on what is enabled.

The format of ajob level ACL isthe same asthe format for a queue level ACL asdefined in
the Cluster Setup documentation.

6.5. Job Input
InputFormat describes the input-specification for a MapReduce job.

The MapReduce framework relies on the | nput For mat of thejob to:

1. Validate the input-specification of the job.

2. Split-up theinput file(s) into logical | nput Spl i t instances, each of which isthen
assigned to an individual Mapper .

3. Providethe Recor dReader implementation used to glean input records from the
logical | nput Spl i t for processing by the Mapper .

The default behavior of file-based | nput For mat implementations, typically sub-classes of

FilelnputFormat, isto split the input into logical | nput Spl i t instances based on the total

size, in bytes, of the input files. However, the Fi | eSyst emblocksize of the input filesis

treated as an upper bound for input splits. A lower bound on the split size can be set via

Page 26

http://hadoop.apache.org/common/docs/current/cluster_setup.html#Configuring+the+Hadoop+Daemons
api/org/apache/hadoop/mapreduce/InputFormat.html
api/org/apache/hadoop/mapreduce/lib/input/FileInputFormat.html

MapReduce Tutorial

mapr educe. i nput.fileinputformat.split.mnsize.

Clearly, logical splits based on input-size is insufficient for many applications since record
boundaries must be respected. In such cases, the application should implement a

Recor dReader , who is responsible for respecting record-boundaries and presents a
record-oriented view of thelogical | nput Spl i t totheindividual task.

TextlnputFormat is the default | nput For mat .

If Text | nput For mat isthel nput For mat for agiven job, the framework detects
input-files with the .gz extensions and automatically decompresses them using the
appropriate Conpr essi onCodec. However, it must be noted that compressed files with
the above extensions cannot be split and each compressed file is processed in its entirety by a
single mapper.

6.5.1. InputSplit

[nputSplit represents the data to be processed by an individual Mapper .

Typicaly | nput Spl i t presents abyte-oriented view of theinput, and it isthe
responsibility of Recor dReader to process and present a record-oriented view.

FileSplit isthe default | nput Spl it . It setsmapr educe. map. i nput. fil e tothe path
of theinput file for the logical split.

6.5.2. RecordReader
RecordReader reads <key, val ue> parsfromanl| nput Split.

Typicaly the Recor dReader converts the byte-oriented view of the input, provided by the
| nput Spl i t, and presents arecord-oriented to the Mapper implementations for
processing. Recor dReader thus assumes the responsibility of processing record
boundaries and presents the tasks with keys and values.

6.6. Job Output
OutputFormat describes the output-specification for a MapReduce job.

The MapReduce framework relies on the Qut put For mat of the job to:

1. Validate the output-specification of the job; for example, check that the output directory
doesn't already exist.

2. Providethe Recor dWi t er implementation used to write the output files of the job.
Output filesarestoredinaFi | eSyst em

Page 27

api/org/apache/hadoop/mapreduce/lib/input/TextInputFormat.html
api/org/apache/hadoop/mapreduce/InputSplit.html
api/org/apache/hadoop/mapreduce/lib/input/FileSplit.html
api/org/apache/hadoop/mapreduce/RecordReader.html
api/org/apache/hadoop/mapreduce/OutputFormat.html

MapReduce Tutorial

Text Qut put For mat isthe default Qut put For mat .

6.6.1. Lazy Output Creation

It is possible to delay creation of output until the first write attempt by using
LazyOutputFormat. Thisis particularly useful in preventing the creation of zero byte files
when there is no call to output.collect (or Context.write). Thisis achieved by calling the
static method set Qut put For mat Cl ass of LazyQut put For mat with the intended
CQut put For mat asthe argument. The following example shows how to delay creation of
fileswhen using the Text Qut put For mat

i nport

or g. apache. hadoop. mapr educe. | i b. out put . LazyCQut put For mat ;
LazyQut put For mat . set Qut put For mat Cl ass(j ob,

Text Qut put For mat . cl ass) ;

6.6.2. OutputCommitter
OutputCommitter describes the commit of task output for a MapReduce job.

The MapReduce framework relies on the Qut put Commi t t er of thejob to:

1. Setup thejob during initialization. For example, create the temporary output directory for
the job during the initialization of the job. Job setup is done by a separate task when the
job isin PREP state and after initializing tasks. Once the setup task compl etes, the job
will be moved to RUNNING state.

2. Cleanup the job after the job completion. For example, remove the temporary output
directory after the job completion. Job cleanup is done by a separate task at the end of the
job. Job is declared SUCCEDED/FAILED/KILLED after the cleanup task completes.

3. Setup the task temporary output. Task setup is done as part of the same task, during task
initialization.

4. Check whether atask needs a commit. Thisisto avoid the commit procedure if atask
does not need commit.

5. Commit of the task output. Once task is done, the task will commit it's output if required.

6. Discard the task commit. If the task has been failed/killed, the output will be cleaned-up.
If task could not cleanup (in exception block), a separate task will be launched with same
attempt-id to do the cleanup.

Fi | eQut put Conmi tt er isthedefault Qut put Conmi t t er . Job setup/cleanup tasks
occupy map or reduce slots, whichever is free on the TaskTracker. And JobCleanup task,
TaskCleanup tasks and JobSetup task have the highest priority, and in that order.

Page 28

api/org/apache/hadoop/mapreduce/lib/output/LazyOutputFormat.html
api/org/apache/hadoop/mapreduce/OutputCommitter.html
api/org/apache/hadoop/mapreduce/lib/output/FileOutputCommitter.html

MapReduce Tutorial

6.6.3. Task Side-Effect Files

In some applications, component tasks need to create and/or write to side-files, which differ
from the actual job-output files.

In such cases there could be issues with two instances of the same Mapper or Reducer
running simultaneously (for example, speculative tasks) trying to open and/or write to the
samefile (path) on the Fi | eSyst em Hence the application-writer will have to pick unique
names per task-attempt (using the attemptid, say

attenpt 200709221812 _0001_m 000000_0), not just per task.

To avoid these issues the MapReduce framework, when the Qut put Conmi tt er is

Fi | eCut put Conmi tt er, maintains a special

${ mapr educe. out put.fileoutputformat.outputdir}/ tenporary/ ${taskid}
sub-directory accessible via${ mapr educe. t ask. out put . di r} for each task-attempt
ontheFi | eSyst emwhere the output of the task-attempt is stored. On successful

completion of the task-attempt, the filesin the

${ mapr educe. out put.fileoutputformat.outputdir}/ tenporary/ ${taskid}
(only) are promoted to ${ mapr educe. out put . fi | eout put f ormat. out putdir}.

Of course, the framework discards the sub-directory of unsuccessful task-attempts. This

process is completely transparent to the application.

The application-writer can take advantage of this feature by creating any side-files required
in${ mapr educe. t ask. out put . di r} during execution of atask via
FileOutputFormat.getWorkOutputPath(), and the framework will promote them similarly for
succesful task-attempts, thus eliminating the need to pick unique paths per task-attempt.

Note: Thevalue of ${ mapr educe. t ask. out put . di r} during execution of a particular
task-attempt is actually

${ mapr educe. out put. fil eout putfornmat.outputdir}/ tenporary/ {$taskid},
and thisvalueis set by the MapReduce framework. So, just create any side-filesin the path

returned by FileOutputFormat.getWorkOutputPath() from MapReduce task to take advantage

of thisfeature.

The entire discussion holds true for maps of jobs with reducer=NONE (i.e. O reduces) since
output of the map, in that case, goes directly to HDFS.

6.6.4. RecordWriter
RecordWriter writes the output <key, val ue> pairsto an output file.

RecordWriter implementations write the job outputsto the Fi | eSyst em

Page 29

api/org/apache/hadoop/mapreduce/lib/output/FileOutputFormat.html#getWorkOutputPath(org.apache.hadoop.mapreduce.TaskInputOutputContext)
api/org/apache/hadoop/mapreduce/lib/output/FileOutputFormat.html#getWorkOutputPath(org.apache.hadoop.mapreduce.TaskInputOutputContext)
api/org/apache/hadoop/mapreduce/RecordWriter.html

MapReduce Tutorial

6.7. Other Useful Features

6.7.1. Submitting Jobsto Queues

Users submit jobs to Queues. Queues, as collection of jobs, allow the system to provide
specific functionality. For example, queues use ACL s to control which users who can submit
jobs to them. Queues are expected to be primarily used by Hadoop Schedulers.

Hadoop comes configured with a single mandatory queue, called 'default’. Queue names are
defined in the mapr ed. queue. nanes property of the Hadoop site configuration. Some
job schedulers, such as the Capacity Scheduler, support multiple queues.

A job defines the queue it needs to be submitted to through the
mapr educe. j ob. queuenane property. Setting the queue name is optional. If ajobis
submitted without an associated queue name, it is submitted to the 'default’ queue.

6.7.2. Counters

Count er s represent global counters, defined either by the MapReduce framework or
applications. Each Count er can be of any Enumtype. Counters of a particular Enumare
bunched into groups of type Count er s. Gr oup.

Applications can define arbitrary Count er s (of type Enun); get aCount er object from
the task's Context with the get Count er () method, and then call the

Count er . i ncrenent (1 ong) method to increment its value locally. These counters are
then globally aggregated by the framework.

6.7.3. DistributedCache
DistributedCache distributes application-specific, large, read-only files efficiently.

Di stri but edCache isafacility provided by the MapReduce framework to cache files
(text, archives, jars and so on) needed by applications.

Applications specify the files to be cached via urls (hdfs://) in the Job. The
Di stri but edCache assumesthat the files specified via hdfs:// urls are aready present on
theFi | eSystem

The framework will copy the necessary files to the slave node before any tasks for the job are
executed on that node. Its efficiency stems from the fact that the files are only copied once
per job and the ability to cache archives which are un-archived on the slaves.

Di st ri but edCache tracks the modification timestamps of the cached files. Clearly the

Page 30

capacity_scheduler.html
api/org/apache/hadoop/mapreduce/Counters.html
api/org/apache/hadoop/mapreduce/Counter.html
api/org/apache/hadoop/mapreduce/TaskInputOutputContext.html#getCounter(java.lang.Enum)
api/org/apache/hadoop/mapreduce/Counter.html#increment(long)
api/org/apache/hadoop/filecache/DistributedCache.html

MapReduce Tutorial

cache files should not be modified by the application or externally while the job is executing.

Di stri but edCache can be used to distribute simple, read-only data/text files and more
complex types such as archives and jars. Archives (zip, tar, tgz and tar.gz files) are
un-archived at the slave nodes. Files have execution permissions set.

The files/archives can be distributed by setting the property

mapr ed. cache. {fi | es| ar chi ves}. If morethan one file/archive has to be
distributed, they can be added as comma separated paths. The properties can also be set by
APIs DistributedCache.addCacheFile(URI conf)/

DistributedCache.addCacheArchive(URI conf) and

DistributedCache.setCacheFiles(URI s.conf)/ DistributedCache.setCacheArchives(URIs,conf)
where URI isof theform hdf s: // host : port/ absol ut e- pat h#l i nk- nane. In
Streaming, the files can be distributed through command line option

-cacheFi | e/ - cacheAr chi ve.

Optionally users can aso direct the Di st ri but edCache to symlink the cached file(s) into
thecurrent working directory of thetask viathe
DistributedCache.createSymlink(Configuration) api. Or by setting the configuration property
mapr educe. j ob. cache. synl i nk. cr eat e asyes. The DistributedCache will use
thef r agnment of the URI asthe name of the symlink. For example, the URI

hdf s: // nanmenode: port/lib. so. 1#l i b. so will have the symlink name as

i b. sointask'scwd for thefilel i b. so. 1 indistributed cache.

TheDi stri but edCache can also be used as a rudimentary software distribution
mechanism for use in the map and/or reduce tasks. It can be used to distribute both jars and
native libraries. The DistributedCache.addArchiveT oClassPath(Path, Configuration) or
DistributedCache.addFileT oClassPath(Path, Configuration) api can be used to cache filedjars
and also add them to the classpath of child-jvm. The same can be done by setting the
configuration properties mapr educe. j ob. cl asspat h. {fi | es| archi ves}.
Similarly the cached files that are symlinked into the working directory of the task can be
used to distribute native libraries and load them.

6.7.3.1. Private and Public DistributedCache Files

DistributedCache files can be private or public, that determines how they can be shared on
the slave nodes.

« "Private" DistributedCache files are cached in alocal directory private to the user whose
jobs need these files. These files are shared by all tasks and jobs of the specific user only
and cannot be accessed by jobs of other users on the slaves. A DistributedCache file
becomes private by virtue of its permissions on the file system where the files are
uploaded, typically HDFS. If the file has no world readable access, or if the directory

Page 31

api/org/apache/hadoop/filecache/DistributedCache.html#addCacheFile(java.net.URI,%20org.apache.hadoop.conf.Configuration)
api/org/apache/hadoop/filecache/DistributedCache.html#addCacheArchive(java.net.URI,%20org.apache.hadoop.conf.Configuration)
api/org/apache/hadoop/filecache/DistributedCache.html#setCacheFiles(java.net.URI[],%20org.apache.hadoop.conf.Configuration)
api/org/apache/hadoop/filecache/DistributedCache.html#setCacheArchives(java.net.URI[],%20org.apache.hadoop.conf.Configuration)
api/org/apache/hadoop/filecache/DistributedCache.html#createSymlink(org.apache.hadoop.conf.Configuration)
api/org/apache/hadoop/filecache/DistributedCache.html#addArchiveToClassPath(org.apache.hadoop.fs.Path,%20org.apache.hadoop.conf.Configuration)
api/org/apache/hadoop/filecache/DistributedCache.html#addFileToClassPath(org.apache.hadoop.fs.Path,%20org.apache.hadoop.conf.Configuration)

MapReduce Tutorial

path leading to the file has no world executable access for |ookup, then the file becomes
private.

« "Public" DistributedCache files are cached in aglobal directory and the file accessis
setup such that they are publicly visible to al users. These files can be shared by tasks
and jobs of all users on the slaves. A DistributedCache file becomes public by virtue of
its permissions on the file system where the files are uploaded, typicaly HDFS. If thefile
has world readable access, AND if the directory path leading to the file has world
executable access for lookup, then the file becomes public. In other words, if the user
intends to make afile publicly available to all users, the file permissions must be set to be
world readable, and the directory permissions on the path leading to the file must be
world executable.

TheDi st ri but edCache tracks modification timestamps of the cache files/archives.
Clearly the cache files/archives should not be modified by the application or externally while
thejob is executing.

Hereisanillustrative example on how to use the Di st ri but edCache:
I Setting up the cache for the application 1. Copy the requisite filesto the Fi | eSyst em

$ bi
$ bi
$ bi
$ bi
$ bi
$ bi

n/ hadoop fs -copyFroniLocal | ookup.dat /nmyapp/| ookup. dat
n/ hadoop fs -copyFroniocal map. zip /nyapp/ map. zip

n/ hadoop fs -copyFronLocal nylib.jar /myapp/nylib.jar
n/ hadoop fs -copyFronLocal nytar.tar /myapp/ nytar.tar
n/ hadoop fs -copyFroniocal nytgz.tgz /nyapp/ nytgz.tgz
n/ hadoop fs -copyFronLocal nytargz.tar.gz

[myapp/ nytargz.tar.gz
2. Setup thejob

Job
j ob.
j ob.
j ob.
j ob.
j ob.
j ob.

j ob = new Job(conf);

addCacheFi | e(new URI ("/ nmyapp/ | ookup. dat #| ookup. dat"));
addCacheAr chi ve(new URI ("/ nmyapp/ map. zi p"));

addFi | eToC assPat h(new Pat h("/ nyapp/ nylib.jar"));
addCacheAr chi ve(new UR ("/ nyapp/ nytar.tar ")) ;
addCacheAr chi ve(new URI ("/ myapp/ nytgz.tgz"));
addCacheAr chi ve(new URI ("/ nyapp/ nytargz.tar.gz"));

3. Usethe cached filesinthe{ @ i nk or g. apache. hadoop. mapr educe. Mapper}
or {@ink org.apache. hadoop. mapr educe. Reducer}:

publ

ic static class MapQ ass extends Mapper<K, V, K V> {

private Path[] | ocal Archives;
private Path[] |ocal Fil es;
public void setup(Context context) {

/'l Get the cached archives/files
| ocal Archives = context.getLocal CacheArchives();

Page 32

MapReduce Tutorial

| ocal Fil es = context.getLocal CacheFil es();

public void map(K key, V value, Context context) throws

| OException {
/] Use data fromthe cached archives/files here
[/
[l ...
context.wite(k, v);

}
}
6.7.4. Tool

The Toal interface supports the handling of generic Hadoop command-line options.

Tool isthe standard for any MapReduce tool or application. The application should delegate
the handling of standard command-line options to GenericOptionsParser via
ToolRunner.run(Tool, String[]) and only handle its custom arguments.

The generic Hadoop command-line options are:
-conf <configuration file>

-D <property=val ue>

-fs <l ocal | nanmenode: port >

-jt <l ocal|jobtracker:port>

6.7.5. I solationRunner

| solationRunner is a utility to help debug MapReduce programs.

Tousethel sol ati onRunner , first set keep. fai l ed. tasks.filestotrue (aso
seekeep. tasks.fil es. pattern).

Next, go to the node on which the failed task ran and go to the TaskTr acker 'slocal
directory and runthel sol at i onRunner :

$ cd <l ocal path>

/ t askTr acker/ $user/j obcache/ $j obi d/ ${t aski d} / wor k

$ bi n/ hadoop org. apache. hadoop. mapr ed. | sol ati onRunner
../job.xm

| sol at i onRunner will run the failed task in asingle jvm, which can be in the debugger,
over precisaly the same input.

Page 33

api/org/apache/hadoop/util/Tool.html
api/org/apache/hadoop/util/GenericOptionsParser.html
api/org/apache/hadoop/util/ToolRunner.html#run(org.apache.hadoop.util.Tool, java.lang.String[])
api/org/apache/hadoop/mapred/IsolationRunner.html

MapReduce Tutorial

6.7.6. Profiling

Profiling isa utility to get arepresentative (2 or 3) sample of built-in java profiler for a
sample of maps and reduces.

User can specify whether the system should collect profiler information for some of the tasks
in the job by setting the configuration property mapr educe. t ask. profi | e. Thevaue
can be set using the api Job.setProfileEnabled(boolean). If thevalueisset t r ue, the task
profiling is enabled. The profiler information is stored in the user log directory. By default,
profiling is not enabled for the job.

Once user configuresthat profiling is needed, she/he can use the configuration property

mapr educe. t ask. profil e. {maps| reduces} to set the ranges of MapReduce tasks
to profile. The value can be set using the api Job.setProfileT askRange(boolean,String). By
default, the specified rangeis 0- 2.

User can also specify the profiler configuration arguments by setting the configuration

property mapr educe. t ask. profi | e. par ans. The value can be specified using the

api Job.setProfileParams(String). If the string contains a%s, it will be replaced with the

name of the profiling output file when the task runs. These parameters are passed to the task

child VM on the command line. The default value for the profiling parametersis

-agent | i b: hpr of =cpu=sanpl es, heap=si tes, force=n, t hr ead=y, ver bose=n, fi |l e=%

6.7.7. Debugging

The MapReduce framework provides a facility to run user-provided scripts for debugging.
When a MapReduce task fails, a user can run adebug script, to process task logs for
example. The script is given access to the task's stdout and stderr outputs, syslog and jobconf.
The output from the debug script's stdout and stderr is displayed on the console diagnostics
and also as part of the job UL.

In the following sections we discuss how to submit a debug script with ajob. The script file
needs to be distributed and submitted to the framework.

6.7.7.1. How to distribute the script file:

The user needs to use DistributedCache to distribute and symlink the script file.

6.7.7.2. How to submit the script:

A quick way to submit the debug script isto set values for the properties
mapr educe. map. debug. scri pt and mapr educe. r educe. debug. scri pt, for

Page 34

api/org/apache/hadoop/mapreduce/Job.html#setProfileEnabled(boolean)
api/org/apache/hadoop/mapreduce/Job.html#setProfileTaskRange(boolean,%20java.lang.String)
api/org/apache/hadoop/mapreduce/Job.html#setProfileParams(java.lang.String)
mapred_tutorial.html#DistributedCache

MapReduce Tutorial

debugging map and reduce tasks respectively. These properties can also be set by using APIs
Job. get Configuration().set(Job. MAP_DEBUG SCRI PT, String) and
Job. get Configuration().set(Job. REDUCE DEBUG SCRI PT, String).In
streaming mode, a debug script can be submitted with the command-line options

- mapdebug and - r educedebug, for debugging map and reduce tasks respectively.

The arguments to the script are the task's stdout, stderr, syslog and jobconf files. The debug
command, run on the node where the MapReduce task failed, is:
$scri pt $stdout $stderr $syslog $jobconf

Pipes programs have the c++ program name as a fifth argument for the command. Thus for
the pipes programs the command is

$script $stdout $stderr $sysl og $j obconf $program

6.7.7.3. Default Behavior:

For pipes, adefault script isrun to process core dumps under gdb, prints stack trace and gives
info about running threads.

6.7.8. JobControl

JobContral is a utility which encapsulates a set of MapReduce jobs and their dependencies.

6.7.9. Data Compression

Hadoop MapReduce provides facilities for the application-writer to specify compression for
both intermediate map-outputs and the job-outputs i.e. output of the reduces. It also comes
bundled with CompressionCodec implementation for the zlib compression algorithm. The
gzip file format is also supported.

Hadoop aso provides native implementations of the above compression codecs for reasons
of both performance (zlib) and non-availability of Javalibraries. For more information see
the Native Libraries Guide.

6.7.9.1. Intermediate Outputs

Applications can control compression of intermediate map-outputs viathe

Job. get Configuration().setBool ean(Job. MAP_COUTPUT _COVPRESS,
bool) api and the Conpr essi onCodec to be used viathe

Job. get Configuration().setd ass(Job. MAP_OUTPUT _COMPRESS CODEC,
Cl ass, Conpressi onCodec. cl ass) api.

Page 35

api/org/apache/hadoop/mapred/jobcontrol/package-summary.html
api/org/apache/hadoop/io/compress/CompressionCodec.html
http://www.zlib.net/
http://www.gzip.org/
http://hadoop.apache.org/common/docs/current/native_libraries.html

MapReduce Tutorial

6.7.9.2. Job Outputs

Applications can control compression of job-outputs viathe
FileOutputFormat.setCompressOutput(Job, boolean) api and the Conpr essi onCodec to
be used can be specified via the FileOutputFormat.setOutputCompressor Class(Job, Class)

api.

If the job outputs are to be stored in the SequenceFileOutputFormat, the required
SequenceFi | e. Conpr essi onType (i.e. RECORD/ BLOCK - defaults to RECORD) can
be specified via the SequenceFileOutputFormat.setOutputCompressionType(Job,
SequenceFile.CompressionType) api.

6.7.10. Skipping Bad Records

Hadoop provides an option where a certain set of bad input records can be skipped when
processing map inputs. Applications can control this feature through the SkipBadRecords
class.

This feature can be used when map tasks crash deterministically on certain input. This
usually happens due to bugs in the map function. Usually, the user would have to fix these
bugs. Thisis, however, not possible sometimes. The bug may be in third party libraries, for
example, for which the source code is not available. In such cases, the task never completes
successfully even after multiple attempts, and the job fails. With this feature, only a small
portion of data surrounding the bad recordsis lost, which may be acceptable for some
applications (those performing statistical analysis on very large data, for example).

By default this feature is disabled. For enabling it, refer to
SkipBadRecords.setM apperM axSkipRecords(Configuration, long) and
SkipBadRecords.setReducerM ax SkipGroups(Configuration, long).

With this feature enabled, the framework gets into 'skipping mode' after a certain number of
map failures. For more details, see

SkipBadRecords.setA ttemptsT oStartSkipping(Configuration, int). In 'skipping mode', map
tasks maintain the range of records being processed. To do this, the framework relies on the
processed record counter. See

SkipBadRecords. COUNTER_MAP_PROCESSED RECORDS and

SkipBadRecords. COUNTER_REDUCE_PROCESSED _GROUPS. This counter enables the
framework to know how many records have been processed successfully, and hence, what
record range caused atask to crash. On further attempts, this range of records is skipped.

The number of records skipped depends on how frequently the processed record counter is
incremented by the application. It is recommended that this counter be incremented after

Page 36

api/org/apache/hadoop/mapreduce/lib/output/FileOutputFormat.html#setCompressOutput(org.apache.hadoop.mapreduce.Job,%20boolean)
api/org/apache/hadoop/mapreduce/lib/output/FileOutputFormat.html#setOutputCompressorClass(org.apache.hadoop.mapreduce.Job,%20java.lang.Class)
api/org/apache/hadoop/mapreduce/lib/output/SequenceFileOutputFormat.html
api/org/apache/hadoop/mapreduce/lib/output/SequenceFileOutputFormat.html#setOutputCompressionType(org.apache.hadoop.mapreduce.Job,%20org.apache.hadoop.io.SequenceFile.CompressionType)
api/org/apache/hadoop/mapreduce/lib/output/SequenceFileOutputFormat.html#setOutputCompressionType(org.apache.hadoop.mapreduce.Job,%20org.apache.hadoop.io.SequenceFile.CompressionType)
api/org/apache/hadoop/mapred/SkipBadRecords.html
api/org/apache/hadoop/mapred/SkipBadRecords.html#setMapperMaxSkipRecords(org.apache.hadoop.conf.Configuration, long)
api/org/apache/hadoop/mapred/SkipBadRecords.html#setReducerMaxSkipGroups(org.apache.hadoop.conf.Configuration, long)
api/org/apache/hadoop/mapred/SkipBadRecords.html#setAttemptsToStartSkipping(org.apache.hadoop.conf.Configuration, int)
api/org/apache/hadoop/mapred/SkipBadRecords.html#COUNTER_MAP_PROCESSED_RECORDS
api/org/apache/hadoop/mapred/SkipBadRecords.html#COUNTER_REDUCE_PROCESSED_GROUPS

MapReduce Tutorial

every record is processed. This may not be possible in some applications that typically batch
their processing. In such cases, the framework may skip additional records surrounding the
bad record. Users can control the number of skipped records through

SkipBadRecords.setM apperM ax SkipRecords(Configuration, long) and
SkipBadRecords.setReducerM axSkipGroups(Configuration, long). The framework tries to
narrow the range of skipped records using a binary search-like approach. The skipped range
isdivided into two halves and only one half gets executed. On subsequent failures, the
framework figures out which half contains bad records. A task will be re-executed till the
acceptable skipped value is met or al task attempts are exhausted. To increase the number of
task attempts, use Job.setM axM apAttempts(int) and Job.setM axReduceAttempts(int).

Skipped records are written to HDFS in the sequence file format, for later analysis. The
location can be changed through SkipBadRecords.setSkipOutputPath(conf, Path).

7. Example: WordCount v2.0

Here isamore complete Wor dCount which uses many of the features provided by the
M apReduce framework we discussed so far.

This example needs the HDFS to be up and running, especially for the
Di stri but edCache-related features. Hence it only works with a pseudo-distributed
(Single Node Setup) or fully-distributed (Cluster Setup) Hadoop installation.

7.1. Source Code

package org. nyorg;

i mport java.io.*;

import java.util.*;

i mport org.apache. hadoop. fs. Pat h;
i mport org. apache. hadoop. fil ecache. Di stri but edCac

i mport org. apache. hadoop. conf. *;

Ol N 0|~ w0 DN

i mport org.apache. hadoop.io. *;

-
o

i mport org. apache. hadoop. mapr educe. *;

Page 37

api/org/apache/hadoop/mapred/SkipBadRecords.html#setMapperMaxSkipRecords(org.apache.hadoop.conf.Configuration, long)
api/org/apache/hadoop/mapred/SkipBadRecords.html#setReducerMaxSkipGroups(org.apache.hadoop.conf.Configuration, long)
api/org/apache/hadoop/mapreduce/Job.html#setMaxMapAttempts(int)
api/org/apache/hadoop/mapreduce/Job.html#setMaxReduceAttempts(int)
api/org/apache/hadoop/mapred/SkipBadRecords.html#setSkipOutputPath(org.apache.hadoop.mapred.JobConf, org.apache.hadoop.fs.Path)
http://hadoop.apache.org/common/docs/current/single_node_setup.html
http://hadoop.apache.org/common/docs/current/cluster_setup.html#Fully-Distributed+Operation

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.

MapReduce Tutorial

i mport org. apache. hadoop. mapreduce. i b. i nput.*;
i mport org.apache. hadoop. mapreduce. | i b. out put . *;

i mport org.apache. hadoop. util.*;

public class WrdCount2 extends Configured inplen

public static class Mp

ext ends Mapper<LongWitable, Text, Text, |

static enum Counters { | NPUT_WORDS }

private final static IntWitable one = new |

private Text word = new Text();

private bool ean caseSensitive = true;

private Set<String> patternsToSki p = new Has

private | ong nunRecords = O;

private String inputFile;

public void setup(Context context) {
Configuration conf = context.getConfigurat
caseSensitive = conf. get Bool ean("wor dcount

i nputFile = conf.get("mapreduce. map. i nput.

i f (conf.getBool ean("wordcount. skip. patter

Pat h[] patternsFiles = new Path[0];

Page 38

MapReduce Tutorial

38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.

try {
patternsFiles = DistributedCache. getLa

} catch (1 CException ioe) {
Systemerr.println("Caught exception v
+ StringWils.stringifyException(i
}
for (Path patternsFile : patternsFiles)

par seSki pFi |l e(patternsFile);

private void parseSkipFile(Path patternsFil e
try {
Buf f eredReader fis = new BufferedReader (
patternsFile.toString()));
String pattern = null;
while ((pattern = fis.readLine()) != nul
patternsToSki p. add(pattern);
}
} catch (I OCexception ioe) {
Systemerr.println("Caught exception whi

+ patternsFile + "' : " 4+ StringUi

public void map(LongWitabl e key, Text val ue

Page 39

65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.

MapReduce Tutorial

throws | OException, |nterruptedExceptior
String line = (caseSensitive) ?

value.toString() : value.toString().tc

for (String pattern : patternsToSkip) {

line = line.replaceAll (pattern, "");

StringTokeni zer tokenizer = new StringToke
whi | e (tokenizer. hasMreTokens()) {
wor d. set (t okeni zer. next Token());
context.wite(word, one);

cont ext . get Count er (Count er s. | NPUT_WORDS)

i f ((++nunmRecords % 100) == 0) {
cont ext . set St at us("Fi ni shed processing "

+ " records + "fromthe input file

public static class Reduce
extends Reducer<Text, IntWitable, Text,
public void reduce(Text key, lterable<IintWi

Cont ext context) throws | CException, Int

Page 40

MapReduce Tutorial

92. int sum= 0;

93. for (IntWitable val : values) {

94, sum += val . get();

95. }

96. context.wite(key, new IntWitable(sum);
97. }

98. }

99.

100. public int run(String[] args) throws Exception
101. Job job = new Job(get Conf());

102. j ob. set Jar Byd ass(Wr dCount 2. cl ass);

103. j ob. set JobNanme("wor dcount 2. 0") ;

104.

105. j ob. set Qut put Keyd ass(Text. cl ass);

106. j ob. set Qut put Val ueC ass(I nt Wi table.cl ass);
107.

108. j ob. set Mapper Cl ass(Map. cl ass);

109. j ob. set Conmbi ner d ass(Reduce. cl ass);

110. j ob. set Reducer d ass(Reduce. cl ass);

111.

112. /1 Note that these are the default.

113. j ob. set | nput For nat Cl ass(Text | nput For mat . ¢l as
114. j ob. set Qut put For mat A ass(Text Qut put For mat . cl
115.

116. Li st<String> other_args = new ArraylList<Stri
117. for (int i=0; i < args.length; ++i) {

118. if ("-skip".equals(args[i])) {

Page 41

1109.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.

7.2. Sample Runs
Sample text-files as input:

MapReduce Tutorial

Di st ri but edCache. addCacheFi | e(new Pat h(&
job. getConfiguration());
j ob. get Confi guration(). setBool ean("wordc
} else {

ot her _args. add(args[i]);

Fi | el nput For mat . set | nput Pat hs(j ob, new Pat h(

Fi | eQut put For mat . set Qut put Pat h(j ob, new Pat h

bool ean success = job.wait For Conpl etion(true

return success ? 0 : 1;

public static void main(String[] args) throws
int res = Tool Runner.run(new Configuration()

Systemexit(res);

$ bin/hadoop fs -Is /user/joe/wordcount/input/

[user/joe/wordcount/input/fileOl
[user/joe/wordcount/input/file02

$ bin/ hadoop fs -cat /user/joe/wordcount/input/file0l

Hell o World, Bye Worl d!

Page 42

MapReduce Tutorial

$ bin/ hadoop fs -cat /user/joe/wordcount/input/file02
Hel | o Hadoop, Goodbye to hadoop.

Run the application:

$ bin/ hadoop jar /user/joe/wrdcount.jar org.nyorg. WrdCount 2
[user/joe/wordcount/input /user/joe/wordcount/out put

Output:

$ bin/hadoop fs -cat /user/joe/wordcount/output/part-r-00000
Bye 1

Goodbye 1

Hadoop, 1

Hello 2

Wrld! 1

Wrld, 1

hadoop. 1

to 1

Notice that the inputs differ from the first version we looked at, and how they affect the
outputs.

Now, lets plug-in a pattern-file which lists the word-patterns to be ignored, viathe
Di st ri but edCache.

$ hadoop fs -cat /user/joe/wordcount/patterns.txt
\.
\,
\!
to

Run it again, this time with more options:

$ bin/ hadoop jar /user/joe/wrdcount.jar org.nyorg. WrdCount 2
- Dwor dcount . case. sensitive=true /user/joe/wordcount/input

[user/j oel/ wordcount/out put -skip

[user/joel/ wordcount/ patterns.txt

As expected, the output:

$ bin/ hadoop fs -cat /user/joe/wordcount/output/part-r-00000
Bye 1

Goodbye 1

Hadoop 1

Page 43

MapReduce Tutorial

Hello 2
Wwrld 2
hadoop 1

Run it once more, this time switch-off case-sensitivity:

$ bin/ hadoop jar /user/joe/wrdcount.jar org.nyorg. WrdCount 2
- Dwor dcount . case. sensitive=fal se /user/joe/wordcount/input

[user/joe/wordcount/output -skip

[user/joe/wordcount/patterns.txt

Sure enough, the outpuit:

$ bin/hadoop fs -cat /user/joe/wordcount/output/part-r-00000
bye 1

goodbye 1

hadoop 2

hello 2

world 2

7.3. Highlights

The second version of Wor dCount improves upon the previous one by using some features
offered by the MapReduce framework:

« Demonstrates how applications can access configuration parametersin the set up
method of the Mapper (and Reducer) implementations (lines 31-48).

« Demonstrates how the Di st ri but edCache can be used to distribute read-only data
needed by the jobs. Here it allows the user to specify word-patterns to skip while
counting (line 119).

« Demonsgtrates the utility of the Tool interface and the Generi cOpti onsPar ser to
handle generic Hadoop command-line options (line 135).

« Demonstrates how applications can use Count er s (line 77) and how they can set
application-specific status information viathe Cont ext instance passed to the map (and
r educe) method (line 81).

Java and JNI are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United Sates and other countries.

Page 44

	1 Purpose
	2 Prerequisites
	3 Overview
	4 Inputs and Outputs
	5 Example: WordCount v1.0
	5.1 Source Code
	5.2 Usage
	5.3 Bundling a data payload with your application
	5.4 Walk-through

	6 MapReduce - User Interfaces
	6.1 Payload
	6.1.1 Mapper
	6.1.1.1 How Many Maps?

	6.1.2 Reducer
	6.1.2.1 Shuffle
	6.1.2.2 Sort
	6.1.2.2.1 Secondary Sort

	6.1.2.3 Reduce
	6.1.2.4 How Many Reduces?
	6.1.2.5 Reducer NONE
	6.1.2.6 Mark-Reset
	6.1.2.6.1 Source Code

	6.1.3 Partitioner
	6.1.4 Reporting Progress

	6.2 Job Configuration
	6.3 Task Execution & Environment
	6.3.1 Configuring Memory Requirements For A Job
	6.3.2 Map Parameters
	6.3.3 Shuffle/Reduce Parameters
	6.3.4 Directory Structure
	6.3.5 Task JVM Reuse
	6.3.6 Configured Parameters
	6.3.7 Task Logs
	6.3.8 Distributing Libraries

	6.4 Job Submission and Monitoring
	6.4.1 Job Control
	6.4.2 Job Authorization

	6.5 Job Input
	6.5.1 InputSplit
	6.5.2 RecordReader

	6.6 Job Output
	6.6.1 Lazy Output Creation
	6.6.2 OutputCommitter
	6.6.3 Task Side-Effect Files
	6.6.4 RecordWriter

	6.7 Other Useful Features
	6.7.1 Submitting Jobs to Queues
	6.7.2 Counters
	6.7.3 DistributedCache
	6.7.3.1 Private and Public DistributedCache Files

	6.7.4 Tool
	6.7.5 IsolationRunner
	6.7.6 Profiling
	6.7.7 Debugging
	6.7.7.1 How to distribute the script file:
	6.7.7.2 How to submit the script:
	6.7.7.3 Default Behavior:

	6.7.8 JobControl
	6.7.9 Data Compression
	6.7.9.1 Intermediate Outputs
	6.7.9.2 Job Outputs

	6.7.10 Skipping Bad Records

	7 Example: WordCount v2.0
	7.1 Source Code
	7.2 Sample Runs
	7.3 Highlights

